
IMPLEMENTATION AND PERFORMANCE
OF FACTORIZED BACKPROJECTION

ON LOW-COST
COMMERCIAL-OFF-THE-SHELF

HARDWARE

THESIS

Alec S. Rasmussen, Capt, USAF

AFIT-ENG-MS-16-M-041

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS-16-M-041

IMPLEMENTATION AND PERFORMANCE

OF FACTORIZED BACKPROJECTION

ON LOW-COST COMMERCIAL-OFF-THE-SHELF HARDWARE

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Alec S. Rasmussen, B.S.

Capt, USAF

March 2016

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-16-M-041

IMPLEMENTATION AND PERFORMANCE

OF FACTORIZED BACKPROJECTION

ON LOW-COST COMMERCIAL-OFF-THE-SHELF HARDWARE

THESIS

Alec S. Rasmussen, B.S.
Capt, USAF

Committee Membership:

Dr. Julie Jackson
Chair

Dr. Peter Collins
Member

Dr. Richard Martin
Member

AFIT-ENG-MS-16-M-041

Abstract

Traditional Synthetic Aperture Radar (SAR) systems are large, complex, and ex-

pensive platforms that require significant resources to operate. The size and cost of

the platforms limits the potential uses of SAR to strategic level intelligence gath-

ering or large budget research efforts. The purpose of this thesis is to implement

the factorized backprojection SAR image processing algorithm in the C++ program-

ming language and test the code’s performance on a low cost, low size, weight, and

power (SWAP) computer : a Raspberry Pi Model B. For a comparison of perfor-

mance, a baseline implementation of filtered backprojection is adapted to C++ from

pre-existing MATLABr code. The factorized backprojection algorithm shows a compu-

tational improvement factor of 2-3 compared to filtered backprojection. Execution on

a single Raspberry Pi is too slow for real-time imaging. However, factorized backpro-

jection is easily parallelized, and we include a discussion of parallel implementation

across multiple Pis.

iv

Acknowledgements

First and foremost, I want to thank my wife. She has been my muse, my coach,

my task master, and my inspiration. Without her, I would never have survived this

program. I also want to thank my wonderful daughter, who has been a shining beacon

whenever things were dark. My advisor, Dr. Jackson, for her guidance and assistance

in deciphering the factorized backprojection literature. And finally, to all my fellow

members of class 16M for their support and encouragement as we approached the end

of our tenure at AFIT.

Alec S. Rasmussen

v

Table of Contents

Page

Abstract . iv

Acknowledgements . v

List of Figures . viii

List of Tables . x

I. Introduction . 1

1.1 Problem Description . 1
1.2 Algorithm Usage . 2
1.3 Tactical Imagery . 3
1.4 Thesis Layout . 4

II. Theory and Background . 7

2.1 Synthetic Aperture Radar . 7
2.1.1 Spotlight SAR Geometry and Data Domains 8
2.1.2 SAR Resolution . 12
2.1.3 Sampling Theory . 14

2.2 Image Formation Algorithms . 15
2.2.1 Tomographic Imaging Methods . 17
2.2.2 Factorized Back Projection . 19

2.3 Hardware . 24

III. Code Development and Methodology . 27

3.1 Language Choice . 27
3.1.1 Memory Usage . 27
3.1.2 Speed of Execution . 29
3.1.3 Compatibility . 29

3.2 Filtered Backprojection Algorithm Development . 31
3.3 Performance of Filtered Backprojection Implemented in

C++ vs. MATLABr . 36
3.4 Factorized Backprojection Algorithm Development 44
3.5 Performance of Factorized Backprojection in C++ vs.

Filtered Backprojection in C++ . 46

IV. Implementation on Raspberry Pi . 57

V. Hardware Implementation Discussion . 61

vi

Page

VI. Conclusions/Future Work . 63

Bibliography . 66

vii

List of Figures

Figure Page

1 Radar system block diagram. 2

2 Spotlight SAR data collection scene. 9

3 Image partitioning example using two levels of
recursion. Red lines indicate quadrant partitions in the
first level of recursion; blue lines depict quadrant
partitions in the second level. 20

4 Example of 5-sample anti-aliasing filter applied to phase
history data. 24

5 Flow chart for main program block of filtered
backprojection. The backprojection subroutine is
depicted in Figure 6. 34

6 Flow chart for sub-routines of filtered backprojection,
i.e. FFT procedures and pixel summation. 35

7 Location of targets in simulation scene. All the targets
have unit amplitude. Targets at (x, y) = (2.5,−2.5),
(2.5,−7.5), (7.5,−2.5) and (7.5,−7.5) are located off
the (x, y) plane and appear at projected locations in the
formed image. 37

8 Zoom in of point scatterer to show resolution cell size. 39

9 Comparison of MATLABr generated image and C++
generated image for the monostatic case. 41

10 Comparison of MATLABr generated image and C++
generated image for the bistatic case. 42

11 Flow chart for main program block of factorized
backprojection. 45

12 Time to compute vs. number of recursion levels for the
example in Figure 9(b). 48

13 Effect of aliasing on image quality for various levels of
recursion. 49

viii

Figure Page

14 Aliasing error introduced through various levels of
recursion. Zero levels of recursion is equivalent to
filtered backprojection (no aliasing), and has the same
error as in Figure 9(c). 50

15 MSE of the aliasing error introduced by recursion. 51

16 Images generated using 2 levels of recursion and varied
filter length. 53

17 Mean squared error of the difference between filtered
backprojection and 2-level recursion factorized
backprojection vs. filter length. 54

18 Memory usage versus levels of recursion for factorized
backprojection. 55

19 Time to compute vs. number of recursion levels on
Raspberry Pi. 58

20 Comparison of images generated on Development laptop
vs. Raspberry Pi for zero recursion levels. 59

21 Comparison of images generated on Development laptop
vs. Raspberry Pi for one recursion level. 59

22 Comparison of images generated on Development laptop
vs. Raspberry Pi for two recursion levels. 60

23 Comparison of images generated on Development laptop
vs. Raspberry Pi for three recursion levels. 60

ix

List of Tables

Table Page

1 Table of Image Geometry Symbols for Figure 2 . 9

2 Table of Parameters for Monostatic Simulation . 38

3 Table of Parameters for Bistatic Simulation . 38

4 C++ resource usage versus MATLABr . 44

x

IMPLEMENTATION AND PERFORMANCE

OF FACTORIZED BACKPROJECTION

ON LOW-COST COMMERCIAL-OFF-THE-SHELF HARDWARE

I. Introduction

1.1 Problem Description

Since the 1950’s, the United States military has used synthetic aperture radar

(SAR) technology extensively to create high-resolution intelligence imaging [1]. SAR

imaging operates on a large platform that provides analysts with large scale observa-

tions of interest targets. Since the introduction of SAR, the military has continued to

demand larger scenes with more detail and higher resolution, requiring more expen-

sive and powerful computers and platforms to create such imagery. However, this begs

the questions: Do bigger, better, more complex technologies always serve practical

needs? While many scholars show the benefits of large scale SAR imaging [2–6], an

increased interest in tactical imaging has opened a niche within the SAR field, specif-

ically at the Air Force Institute of Technology (AFIT) and the U.S. military more

generally, that has not been fully explored. With the increase in budget-constrained,

time-essential, and localized missions, using SAR on a low-cost, low-size weight and

power (SWAP) platform may serve as a very useful tool to add to AFIT and the Air

Force’s SAR toolkit. This thesis will attempt to research and evaluate the feasibil-

ity of processing received SAR data on a low-cost, low-SWAP computer (the signal

processor in Figure 1). As there is limited research in the use of small-platform SAR

imagery, this project serves as the baseline for future research.

1

Figure 1. Radar system block diagram.

The research will be conducted in three stages, focusing on the adaptation of

SAR algorithms to a small-platform friendly programming language. The project

will then focus on adapting the code using factorized backprojection to aid in areas

of small-platform technology that are crucial to its operation: reduced memory usage

and maintenance of image quality while decreasing run-time. The final stage of this

project will then take a functioning SAR algorithm and actually test its ability to run

on a small-platform machine. This research opens the door to numerous continuing

research endeavors for AFIT while also creating the opportunity for a new use of

SAR imaging that could be incorporated into a real-time, low-cost, option for tactical

intelligence in localized missions.

1.2 Algorithm Usage

Many algorithms have been developed to process the received radar data into im-

ages [2,3]. These algorithms can largely be broken up into two groups: direct Fourier

methods and backprojection. In the early 1980’s, Munson et al. [5] recognized the sim-

2

ilarities between spotlight mode SAR and Computerized Axial Tomography (CAT)

and proposed a modified version of the convolution backprojection algorithm being

used for CAT at the time. Backprojection provides a robust imaging algorithm, but

comes with a high computational burden. The high computational burden limits the

use of backprojection to expensive, robust workstations or compute clusters. The

direct Fourier algorithms, such as the polar format algorithm, reduce the computa-

tional burden in exchange for increased active memory usage. For real-time purposes,

backprojection operates on a single received radar pulse at a time and can iteratively

build up the image with each pulse. The direct Fourier methods require the entire

data set to be processed as a whole.

Standard backprojection accounts for non-linear flight paths and has fewer image

artifacts caused by large apertures [7]. The major drawback to the convolution back-

projection algorithm is that it requires O(N3) operations to generate an image as

compared to the O(N2logN) operations for the direct Fourier based methods [5].

In [8–11] faster implementations of the backprojection algorithm are introduced.

These implementations break up the imaging process into smaller pieces, referred to

as factorization. With a less computationally burdensome backprojection algorithm

available, cheaper and less powerful hardware can be used.

1.3 Tactical Imagery

The improvements offered by the fast backprojection algorithm come from a re-

duction in the number of received pulses that are backprojected into the image. The

total operation count can be reduced to be on par with the direct Fourier based meth-

ods by recursively partitioning the backprojection integral. The partitioning involves

breaking the image into smaller subimages and reducing the number of pulses used

to create the subimages. This reduction in computational load while providing most

3

of the benefits of full convolution backprojection has led to the fast backprojection

algorithms becoming increasingly popular [4, 7–9,12–18].

However, the improvements to the fast backprojection algorithm haven’t led to

a significant increase in the efforts to miniaturize a radar system. Projects such as

MicroASAR, NuSAR, and SlimSAR, have worked to reduce the size of radar sys-

tems, but these projects use custom hardware and Field Programmable Gate Arrays

(FPGA’s) to store a digitized demodulated signal locally (on-board the platform),

off-load the signal via tactical data link, or process the image locally [19]. Using

custom hardware can improve processing efficiency, though often this improvement

comes at the cost of increased implementation complexity and/or decreased flexibility

of the processor as well as being more expensive.

Using an FPGA provides a programmable, relatively cheap, dedicated processing

unit. FPGA’s are low power, robust and in a lot of ways an excellent solution to

providing a dedicated image processing unit. However, at the time of this thesis

the development platform available was a Raspberry Pi (R-Pi). Whereas a FPGA

allows for direct programming of the logic circuits to acheive a particular function, the

Raspberry Pi is a general purpose microprocessor. An advantage of using a Raspberry

Pi is that the Raspberry Pi is significantly cheaper than most development platforms

(R-Pi $25, FPGA $89). Another advantage of using the R-Pi is the choice of

programming language: FPGA’s are programmed in Verilog or VHDL, and R-Pi can

pick from many different languages ranging from C to Java to Python.

1.4 Thesis Layout

The overall goal of project is to create a form of the algorithm that maintains

high quality imagery and that is time-sensitive with low-memory overhead and low

cost. The project will unfold in three main stages: algorithm adaptation, algorithm

4

revision, and algorithm practical performance.

Chapter 2 will provide a more detailed explanation to the use of SAR imaging,

its data collection process, and image creation. Chapter 2 will use a compilation of

understanding of Fourier and sampling theory as well as the usage of both filtered

and factorized backprojection.

Using Chapter 2 as the overall knowledge base, Chapter 3 will first introduce the

criteria used in determining language choice for algorithm adaptation, use of oper-

ating system, and an introduction to the experimental hardware platform. Focusing

on memory usage, run-time, and quality of imagery maintained, each of the above

experimental pieces will be evaluated and determined. Chapter 3 will also serve as

the controlled testing for stages one and two of the project. Stage one will evaluate

the new code adaptation with the original algorithm used in MATLAB, comparing

and contrasting the image quality, memory usage and time to generate an image.

Stage two will then implement factorized backprojection and analyze its capability to

decrease run time while maintaining image quality. Stage two will also introduce the

usage of filters for this very reason and will analyze filter length in relation to effects

on run-time.

Chapter 4 evaluate potential transition of the project from the lab into the real-

world, testing the actual ability of the script to run on a low-cost, low-SWAP platform.

Chapter 4 will analyze the actual feasibility of the adapted script to run on the smaller

platform while also evaluating run-time, image quality, and memory usage and noting

areas of possible improvement.

Chapter 5 will serve as the central discussion for what this thesis accomplished

through the three stages of research, with the goal of creating an initial implementa-

tion of factorized backprojection code that has the capability to function on a small

platform. Areas of improvement including code implementation, memory usage, pro-

5

cessor speed, and run-time will all be discussed as possible areas for improvement and

future research.

6

II. Theory and Background

The goal of this chapter is to provide some background on the concepts that will

be explored in this thesis. The foundation of the thesis is synthetic aperture radar

(SAR) imaging. To generate images through SAR, many different approaches can

be taken, mostly revolving around how the received radar signal is collected and

processed. Many different factors, ranging from the flight path of the radar system

to the imaging algorithm used to generate the final image, affect each other and work

together to create an image. As an example, the type of hardware used to process

the received data into an image affects what algorithms can be used.

This chapter will discuss the basics of SAR, provide a brief survey of sampling

theory and how it applies to SAR, a brief overview of the different imaging algorithms

available, and a more in-depth discussion of the convolution/filtered backprojection

algorithm. It will also discuss the current state of low cost commercial-off-the-shelf

(COTS) hardware being explored in this thesis.

2.1 Synthetic Aperture Radar

Synthetic aperture radar (SAR) is a method of radio detection and ranging (radar)

wherein multiple radar pulses are collected from many different look angles of a scene

or target. Combining data from the many look angles gives the same effect as having a

larger antenna, or aperture. The look angles collected are determined by the direction

the radar antenna is pointing, and the flight path of the platform the radar system

is on.

From an imaging perspective, the objective is to create a representation of the

reflectivity function g(x, y, z) of the scene. If the scene is assumed to be represented by

a collection of point scatterers, and assuming that linear superposition is applicable,

7

then the reflectivity function is the summation of the radar reflectivity of all the

scatterers in the scene. Further, assuming that the point scatterers are isotropic the

reflectivity function is represented by

g(x, y, z) = ΣiAiδ(x− xi, y − yi, z − zi) (1)

where Ai is the complex amplitude of the reflection from scatterer i and (xi, yi, zi) is

the location of scatterer i in the scene [20].

The received and transmitted radar pulses are known; however, the reflectivity

function g(x, y, z) itself is not directly known. The received pulse r(t) is a scaled and

shifted copy of the transmitted signal s(t). The received pulse r(t) can be written

as the convolution of the transmitted signal and the the scene reflectivity function:

r(t) = s(t) ∗ g(t) where ∗ is the convolution operator [3]. But the actual scene is

g(x, y, z), so what is the relation between g(x, y, z) and g(t)? The following discussion

summarizes SAR geometry and data relations from [3,20,21].

2.1.1 Spotlight SAR Geometry and Data Domains.

Figure 2 represents a generic data collection scene. As a receiving radar platform

travels along a path, pulses are received at (ideally) contiguous and evenly spaced

azimuth angles θRx while the grazing angle ψRx is kept constant. The same is kept

true for the transmitter, with the difference that pulses are transmitted instead of

received. The bistatic angle β is the angle between the transmitter and receiver lines

of sight. See Table 1 for a description of the image geometry symbols.

8

Figure 2. Spotlight SAR data collection scene.

Table 1. Table of Image Geometry Symbols for Figure 2

Variable Description
ψTx the angle at which the transmitter pulse illuminates the target scene

(grazing angle)
θTx the transmitter azimuth angle from scene reference coordinate system
ψRx the grazing angle of the receiver
θRx the receiver azimuth angle from the scene reference coordinate system
β the angle between transmit and receive look angles
RTx the range from the transmitter to a point in the scene
RRx the range from the receiver to a point in the scene

9

Since (x, y, z) are position coordinates, time can be converted to a distance u by

multiplying by the speed of light. Radar pulses propagate spherically, and the imaged

scene is represented in Cartesian coordinates, so u and (x, y, z) share a spherical-

Cartesian relation. The spherical to Cartesian coordinate conversion is

x =u cos θ cosψ

y =u sin θ cosψ

z =u sinψ

and the Cartesian to spherical coordinate conversion is

u =
√
x2 + y2 + z2

θ = tan−1
(y
x

)
ψ = cos−1

(
z√

x2 + y2 + z2

)

Application of a Cartesian-to-spherical coordinate conversion allows g(x, y, z) to be

represented as

g(u, θ, ψ) = ΣiAiδ(u− ui, θ − θi, ψ − ψi) (2)

of which g(u) is a projection [3]

g(u) =

∫ π/2

−π/2

∫ π

−π
g(u, θ, ψ)dθdψ (3)

where θ is the azimuth angle from point i to the effective radar platform position and

ψ is the angle of the effective radar platform position above the x, y plane (ground

plane) [3]. Note, the effective radar platform position in the bistatic case is an average

of the transmitter and receiver locations. For image formation, the value of ui is

10

often defined to be the distance of point i from the origin (scene center) and is

called differential range. Differential range is the difference between the range from

the antenna to scene center (u0) and antenna to point i. The differential range

is determined by the positions of the transmitter and receiver (not necessarily the

same, as in the bistatic case), and the position of point i. In the far-field case, a

first-order Taylor expansion can be used to approximate the total differential range

as [21]

∆Ri =− xi(cos θTx cosψTx + cos θRx cosψRx)

− yi(sin θTx cosψTx + sin θRx cosψRx)

− zi(sinψTx + sinψRx)

(4)

For each pulse, the received signal r(t) = s(t) ∗ g(t) is match filtered with the

transmitted signal s(t) to produce a range profile g(u) = g(cτ
2 cos(β/2)

) for that pulse.

The Fourier transform of the range profile resides in the spatial frequency, or phase

history, domain at an azimuth angle θ and grazing angle ψ that average the trans-

mitter and receiver angles where the radar pulse was physically collected. The spatial

frequency U is defined as

U =
2 cos(β/2)

c
ω0 (5)

where ω0 is the center frequency of the transmitted/received signal. Then,

G(U) = F{g(u)} =
A

2

∫ u1

−u1
g(u)e−j{u(

2 cos(β/2)
c)ω0}du. (6)

11

Furthermore,

G(X, Y, Z) = F{g(x, y, z)} =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

g(x, y, z)e−j(xX+yY+zZ)dxdydz (7)

g(x, y, z) = F−1{G(X, Y, Z)} =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

G(x, y, z)ej(xX+yY+zZ)dXdY dZ

(8)

Often, SAR imaging assumes scatterers lie in the x-y plane and that data is collected

in a polar format. Then, the relations

g(x, y) = F−1{G(X, Y)}

=

∫ ∞
−∞

∫ ∞
−∞

G(X, Y)ej(xX+yY)dXdY

=

∫ π

−π

∫ ∞
0

|U |G(U, θ)ej2πU(∆R)dUdθ (9)

are used to recover the scene reflectivity.

The scene reflectivity g(x, y) may be estimated from the collection of phase history

pulsesG(U) (or, equivalently, the collection of range profiles g(u)) via Fourier relations

or common SAR imaging algorithms which approximate the Fourier relation under

data collection limitations, including bandwidth, aperture extent, and sampling.

In practice, frequency is uniformly sampled over a fixed bandwidth, and aperture

samples (pulses) are uniformly spaced according to the radar PRF. For circular SAR

collections, pulses are uniformly spaced in azimuth angle. Limited bandwidth and

aperture extent degrade image resolution, as defined next.

2.1.2 SAR Resolution.

One of the most often looked at criteria for image quality is the resolution of the

image, which is measured in both range and cross-range directions. Resolution in the

12

range direction is defined by

∆ρu =
c

2B cos(β/2)
(10)

where c is the speed of light, B is the bandwidth of the received signal [3, 21]. To

define the cross-range resolution, the phase history Cartesian coordinates of bistatic

support must be defined first. The coordinates are defined as

fx =f

(
cos θTx(τ) cosψTx(τ) + cos θRx(τ) cosψRx(τ)

2

)
(11)

fy =f

(
sin θTx(τ) cosψTx(τ) + sin θRx(τ) cosψRx(τ)

2

)
(12)

fz =f

(
sinψTx(τ) + sinψRx(τ)

2

)
(13)

where f is frequency, τ is the time of each pulse and τ = 0 corresponds to the time

of the middle pulse [21]. The bistatic support coordinate system is used to define the

effective bistatic aperture [21]

θbi = tan−1

(
fy(f, τmax)

fx(f, τmax)

)
− tan−1

(
fy(f, τmin)

fx(f, τmin)

)
. (14)

The bistatic support coordinate system is also used to define the azimuth bistatic

look angle θ̄b [21]

θ̄b = tan−1

(
fy(f, 0)

fx(f, 0)

)
(15)

and elevation bistatic look angle

ψ̄b = tan−1

(
fz(f, 0)√

fx(f, 0)2 + fy(f, 0)2

)
. (16)

13

The effective aperture and bistatic look angle are used to define the cross-range res-

olution by

∆ρcr =
c

4fc sin
(
θbi
2

)
cos ψ̄b cos(β/2)

(17)

where fc is the center frequency of the received signal [21].

2.1.3 Sampling Theory.

The physical parameters, such as bandwidth and aperture extent, determine the

resolution, but in modern systems the analog physical signals are sampled and dig-

itally represented. Sampling introduces another aspect of imaging that must be ac-

counted for: aliasing. Aliasing is the recurrence of a sampled signal due to the effects

of Fourier transforms on band-limited signals. The period of recurrence is determined

by the number of samples taken. For the purposes of SAR imaging, this translates

to number of samples taken within the bandwidth and the number of pulses (spatial

samples) taken along the aperture. The Nyquist criteria state that the minimum

sampling rate needs to be twice the highest frequency of interest, otherwise copies of

the signal will start to appear within the spectrum of interest [22].

To prevent aliasing in the range direction u of the spatial domain, the frequency

domain U sample spacing needs to satisfy [20]

2π

∆U
≥ D (18)

where ∆U is the sample spacing in cycles per meter of the spatial frequency domain

data and D is the diameter of the scene being imaged in meters. Starting from

a known or desired D, a maximum ∆U is determined. To achieve the required

maximum sample spacing ∆U , the received pulse must be sampled at least M times.

14

M is found by [20]

∆U =
8πfmax
Mc

(19)

where fmax is the maximum frequency of the received signal, and c is the speed of

light in meters per second.

The total extent in the azimuth direction is the equivalent of bandwidth for the

cross-range dimension, and has to be sampled in much the same manner. Each sample

in the azimuth direction is a received pulse, so the total number of samples is the total

number of pulses that have to be collected. The maximum angular spacing between

the samples (for a circular path around the scene) is determined by [20]

∆θ ≤
2π
D

2(2πfmax)
c

(20)

where ∆θ is the sample spacing in the azimuth direction and D is the diameter of

the scene [3, 20].

With the data collect and image geometries defined and the parameters that

control image quality established, how to process all that information to form an

image is now the topic of discussion.

2.2 Image Formation Algorithms

In general, the imaging methods used in SAR can fall into two categories: direct

Fourier based algorithms and tomographic based algorithms. The algorithms have

both 2-D and 3-D versions for creating images, and in this thesis the 2-D version will

be focused on. The 2-D versions assume that the z-direction data is projected onto

the (x, y) plane and that the pulse data was collected from a constant grazing angle.

All the 2-D imaging methods reconstruct the scene reflectivity g(x, y) from a subset

of projections g(u) = gθi(u), where θi is the azimuth angle of pulse i and u is the

15

range, orthogonal to θi.

The differences between the direct Fourier methods and the tomographic methods

lie in how those projections are processed into an image. A metric that will be used

in discussing the algorithms is computational complexity or burden. Computational

complexity is a measure of the order of magnitude of operations must be performed

to complete the algorithm. In this context, a single “operation” is considered one

complex radix-2 FFT butterfly, which consists of a complex multiply and two complex

additions. The complex operations equate to four floating point multiplies and six

floating point additions [2].

The SAR literature for the direct Fourier techniques is extensive, and there are

many direct Fourier techniques available including: the polar format algorithm, the

range migration algorithm, the chirp scaling algorithm, and the ω−k algorithm [2,23].

The direct Fourier imaging methods produce their image by performing a 2-D inverse

Fourier transform on the entire collection of phase history data at once. For example,

the polar format algorithm first interpolates the collected phase history data from a

polar raster to a Cartesian grid, then performs a 2-D inverse Fourier transform to

obtain an image ĝ(x, y) which approximates the true reflectivity function g(x, y) [2].

The direct Fourier algorithms are a popular choice for SAR image processing due to

their low computational burden: on the order ofO(N2logP) where N is the dimension

of the image (assuming a square grid) and P is the number of pulses gathered [2].

However, the direct Fourier techniques all require the full aperture worth of data to

be collected and processed as a whole [7]. To process all the data at once requires

a large amount of memory, which limits usage on the constrained platforms being

investigated in this thesis. This thesis focuses on the backprojection algorithm, due

to the memory and data collection limitations of the direct Fourier techniques.

16

2.2.1 Tomographic Imaging Methods.

The use of backprojection originated in medical tomographic imaging, such as

Computerized Axial Tomography (CAT) scanning. The tomographic technique was

adapted for SAR applications in 1983 by David C. Munson Jr., W. Kenneth Jenkins,

and James Dennis O’Brien [5]. The work by Munson et al. demonstrated that

SAR can be interpreted as a tomographic reconstruction problem, which uses the

projection-slice theorem and the inverse Radon transform to form images.

The projection slice theorem states that each demodulated waveform from each

look angle “approximates a piece of a one dimensional (1-D) Fourier transform of

a central projection of the ground patch at a corresponding projection angle” [5].

Munson et al. refer to computer aided tomography as a two dimensional (2-D) view

of a three dimensional (3-D) object through processing many 1-D projectional views

from different look angles. While the direct Fourier methods process all the data

from all the pulses at each projection angle in a single massive 2-D FFT, the filtered

backprojection algorithm performs a 1-D FFT on each pulse separately.

The projection slice theorem operates on the foundational relationship that “the

one-dimensional Fourier transform of any projection function gθ(u) is equal to the two-

dimensional Fourier transform G(X, Y) of the image to be reconstructed, evaluated

along a line in the Fourier plane that lies at the same angle θ measured from the X

axis” [3]. In SAR, the 2-D match filtered data is collected, processed and stored in a

range-angle format (u, θ) and so is treated using a polar coordinate system. As shown

in (9), the polar data can be used to directly compute image values g(x,y) using the

inverse Radon transform. The representation of G(X, Y) in polar coordinates is [3]

G(U cos θ, U sin θ) = Gp(U, θ). (21)

17

The Radon transform, in the abstract mathematical sense is the inversion of a

function’s line integrals to recover the function itself. In application to imaging, the

Radon transform “of an image is the mapping of the image into its complete set

of projection functions . . . while the inverse Radon transform reconstructs the image

from its complete set of projections” [3]. The inverse Radon transform in the context

of monostatic SAR is defined by [3,24]

g(x, y) =

∫ π

0

{∫ ∞
−∞
|U |Gp(U, θ)e

j2πU(x cos θ+y sin θ)dU

}
dθ. (22)

The bistatic case of the inverse Radon transform is

g(x, y) =

∫ π

0

{∫ ∞
−∞
|U |Gp(U, θ̄b)e

j2πU(∆R)dU

}
dθ̄b. (23)

In SAR, the match filtered received data gp(u, θ) is in the spatial domain. Simulated

data is often generated directly in the phase history domain as Gp(U, θ̄b). The desired

end result of the inverse Radon transform is a representation of the spatial domain

reflectivity function g(x, y) [3]. The inner integral of (22) is an inverse Fourier trans-

form of the frequency domain data Gp(U, θ) resulting in the spatial domain projection

data gp(u, θ). The outer integral of (22) is the backprojection operaton [3] of the spa-

tial domain projection data, which provides the desired spatial domain reflectivity

function g(x, y) [3, 20]. Implementation of the inverse Radon transform as described

by (22) and (23) is typically referred to as the filtered backprojection algorithm.

From an implementation perspective, the projection slice theorem and inverse

Radon transform allow the 2-D FFT to be constructed iteratively on a pulse by pulse

basis, which in turn means that only the current pulse being processed and the image

itself need to be stored in memory at any given time. The trade off for the reduced

memory usage is a significant increase in computational burden. A general breakout

18

of the computations required for filtered backprojection is as follows. For a data

collect of

• P azimuth samples (pulses)

• L frequency bins (samples) for each pulse

the convolution step (Fourier multiplication) requires O(PL logL) operations. The

data is then used in the backprojection step, which is essentially the summation of

the result of the convolution step over each pixel in the image. For an image of

• N ×N pixels

• P projections

the backprojection step requires O(PN2) operations. Combining these two steps

results in a total number of operations O(PL logL + PN2). If N is significantly

larger than L, N2 is the dominant term, and the order of required operations can

be approximated by O(PN2) [24]. In much of the literature, it is assumed P = N ,

making the computational burden ≈ O(N3). This is a significant increase in number

of operations (for large P) as compared to the direct Fourier techniques which have

a computational complexity of O(log(P)N2).

2.2.2 Factorized Back Projection.

With the computational burden of the filtered backprojection algorithm, its prac-

tical use for SAR imaging is limited to cases where fast image creation isn’t required

and compute power is plentiful. For many applications where time isn’t critical, fil-

tered backprojection is preferred over the direct Fourier methods since the Fourier

methods assume a small aperture support in phase history domain. As the aper-

ture becomes larger, the polar-to-Cartesian interpolation becomes less accurate. It is

possible to process on sub-apertures with Fourier techniques, but that requires more

19

Figure 3. Image partitioning example using two levels of recursion. Red lines indicate
quadrant partitions in the first level of recursion; blue lines depict quadrant partitions
in the second level.

computations to interpolate and combine the images onto a common grid. To expand

the usability of filtered backprojection, a number of fast backprojection algorithms

have been developed [4, 7–12,15,25].

The basic concept of the fast backprojection algorithms is that for a given image

of size N pixels by N pixels, using P collected pulses along the synthetic aperture,

the full N × N image can be constructed by stitching together a number of smaller

images created using the same P pulses. For example, if the smaller images are N
2
× N

2

then there will be 4 sub-images that can be stitched together to form the whole N×N

image [10,24]. Figure 3 shows the full image being partitioned into four pieces in the

first level of recursion (red dividing lines), and then each of those pieces also being

broken into four pieces in the second level of recursion (blue dividing lines).

Subdividing the image doesn’t reduce the computational complexity of backpro-

jection, but it is an important first step. It is shown in [10] that subdividing the

image recursively and backprojecting onto the smallest image, then combining all the

subimages into a full size larger image is equivalent to backprojecting directly onto the

20

full size image. The computational savings comes from using the angular bandlimit

property of the sinogram [9], which is the computerized tomography equivalent of the

inverse Fourier transformed phase history data (range profile data) used in SAR. The

angular bandlimit property states that:

If g(u, θ) is supported in |u| < D and G(U, θ) essentially vanishes for |U | > fmax,

then F (U, θ) essentially vanishes for |θ| > [Dfmax] + 1 [9].

Interpreted for the situation at hand, the angular bandlimit property implies that

“for a subimage of half-size. . . the Nyquist sampling rate in θ is also halved” [9]. From

a SAR perspective, each of the subimages can be formed using a reduced set of the

collected pulses. For the example above, each of the 4 sub-images can be created

using P
2

pulses, which reduces the overall computational burden by a factor of 2.

Applying the image partitioning and pulse reduction recursively is how the factorized

backprojection algorithm is able to reduce the computational burden from O(PN2)

to a theoretical minimum of O(log(P)N2) operations. For each level of recursion, the

number of pulses being backprojected onto each pixel is reduced by a factor of two

using the angular bandlimit property.

The general procedure for backprojecting a set of P projections onto an image

grid is [9]

1. Shift the projection data (range profile) to recenter the data for each of the

subimages.

2. Angularly filter and decimate the projection data to yield four sets of P
2

projec-

tions.

3. Backproject the reduced number of filtered projections to obtain subimages.

4. Combine all subimages to form the final image.

21

To fit the far-field SAR scenario, a few modifications to the general procedure are

required. In the SAR scenario, the data collected are all frequency-offset Fourier data

centered at frequency 2ω0

c
, giving a bandpass signal in the frequency domain. Another

major deviation from general backprojection is that the SAR data are all one-sided

Fourier data, so all operations are complex instead of real [9].

To shift the spatial domain data to a new subimage center, the spatial frequency

domain phase history data must be multiplied by a phase term. The shifting function

is

S = ej2π
fc
c

√
x20+y20 (24)

where fc is the center frequency of the received signal, and (x0, y0) is the center of

the subimage being processed. The shifting function S is applied to every sample in

the collected phase history data (all azimuth and frequency samples) [10]

G′p(U, θ) = SGp(U, θ). (25)

. Once the phase history data has been shifted to the new scene center, the data is

filtered and decimated. The filtering is designed to prevent aliasing when reducing

the number of samples being used to create the image. An ideal anti-aliasing filter

is the sinc function [3]. The filtering operation interpolates new values for the phase

history data based on the decimated sampling rate, using

G′pm(U, θ) =
∆θ

∆θ′

K/2∑
n=−K/2

G′pn(U, θ)
sin(π(θm − θn)/∆θ′

π(θm − θn)/∆θ′
(26)

where G′pn(U, θ) is the value of the nth sample, ∆θ is the original sampling interval,

∆θ′ is the new sampling interval, θm are the new sample positions, θn are the original

sample positions, and K is the total number of samples used in the filter. The filter is

22

applied as a set of coefficients that are multiplied to the original phase history data in

the azimuth dimension. The samples surrounding the new data point being created

G′pm(U, θ) are multiplied by the corresponding coefficients of the sinc function when

centered on the new azimuth angle θm. Figure 4 visually represents how the filter

is applied to the data matrix. After filtering, the decimation step is fairly straight

forward: for a decimation of a factor of two, take every other pulse from the filtered

phase history data. Once the phase history data has been phase shifted, filtered and

decimated, the process is either started over (i.e. shift, filter and decimate again) or

if in the last level of recursion, backproject the data onto the subimage grid.

The last level of recursion is determined by a semi-arbitrary limit. The absolute

limits are when one of the image dimensions is reduced to one pixel, or when the

Fourier data (phase history) is reduced to a single pulse. Any limiting condition

between direct backprojection on the whole data set and the absolute limits can be

chosen. As more levels of recursion are applied to the process, the computational

burden approaches O(N2 logP) [10]. The computational burden is strictly for the

backprojection itself. It does not include any of the prepatory steps to decimate and

interpolate the phase history data, or to recombine the images. The additional steps

shouldn’t have a significant computational burden compared to the backprojection

step. The caveat of “shouldn’t” is stated because the computational burden of the

additional steps is dependent on how the steps are implemented.

23

Figure 4. Example of 5-sample anti-aliasing filter applied to phase history data.

2.3 Hardware

Since the 1950’s, the Air Force has performed SAR imaging utilizing large air-

planes or satellites in conjunction with large computer systems [1,26,27]. These large

systems allow for very large scenes to be imaged at very high resolution and in a

reasonable amount of time. However, the large systems are expensive to develop and

operate, limiting their applications. When the Air Force does attempt to reduce the

size of the platform, custom hardware is typically used [19], which is complex and

expensive to develop. To reduce cost associated with custom hardware, other avenues

24

must be explored to find a low cost, low SWAP platform for image processing. In

recent years, a number of factors have come together to create an abundance of com-

mercially available platforms that meet the desired criteria. Consumer demand for

faster and more capable cell phones, industry demand for low SWAP controllers, a

strong hobbyist community, and rapid improvements to the size and speed of transis-

tor technology have all led to development of a wide variety of low SWAP computer

platforms.

The choice of hardware has a direct impact on what operating systems and pro-

gramming languages can be used, and so a discussion of what hardware is being used

in this thesis is presented here. A sampling of low SWAP computer platforms include:

• The BeagleBoard and its derivitives

• The PandaBoard

• The LinkSprite pcDuino

• Intel Galileo Gen 2

• FXI Technologies Cotton Candy

• Hardkernel Odriod-CI

• Raspberry Pi

Each of these different systems has its pros and cons. Some, like the PandaBoard,

have much better processors and more memory. But its enhanced compute power

comes at a price, literally: the PandaBoard retails for approximately $200 while at

the low end of the cost spectrum, the Raspberry Pi retails for $25. Almost any of

these platforms could have been used for this thesis. However, due to budgetary and

departmental constraints, the Raspberry Pi Model B (R-Pi) is used for this project.

The R-Pi is a fully functional computer on a board the size of a credit card. The

system is based around the Broadcom BRCM2835 System-on-Chip (SOC) which is

in turn based around an ARM 1176 processor. The pertinent specifications of the

25

R-Pi used for this thesis are [28]:

• BRCM2835 SoC at 700MHz

• 512MB RAM

• 2 USB ports

• 17 available GPIO pins

• 700mA, 3.5W power usage

• Physical Dimensions: 85× 56× 17mm.

To use the R-Pi, as with any computer, an operating system (OS) must be in-

stalled. Thanks to a strong open source community, there are a number of OSs

available for the R-Pi. One of the better supported and commonly used OSs is Rasp-

bian, an unofficial port of the Debian operating system with optimizations for running

on the hardware of the R-Pi [29]. To create code that would be compatible with the

Raspbian OS, initial development of the code is completed on a similar operating

system: MacOS 10.6. Creating code for an open source OS gives a significant amount

of freedom in the choice of programming language while keeping cost low.

26

III. Code Development and Methodology

In Chapter 1 the motivation to create a low cost and low size, weight, and power

(SWAP) radar platform is given. This chapter explains the choice of hardware, pro-

gramming language, and the implementation of both the filtered and factorized back-

projection algorithms.

3.1 Language Choice

There are many different programming language choices for implementing the

backprojection algorithms, each with their pros and cons. While many criteria can

be used for supporting a chosen language, this thesis focuses on three parameters in

determining which language would be best suited for implementation on the Rasp-

berry Pi. Using parameters of memory usage, speed of execution, and compatibility,

the language types to be evaluated are MATLABr , interpreted languages and com-

piled languages. MATLABr is separated from other interpreted languages because the

interpreter is only a small part of the suite of tools that MATLABr has available.

3.1.1 Memory Usage.

The first parameter, memory usage, is determined by the amount of Random

Access Memory (RAM) used by the system to create the image data. The RAM used

includes any memory used by a parent application. To begin, MATLABr , specifically

current versions, utilizes a large amount of RAM to run. MATLABr scripts are typically

executed within the user interface; however, the user interface includes additional

tools that may not be necessary for the script being executed. In most workstations

the memory overhead is not an issue, but in the case of a platform such as the

Raspberry Pi any excess memory usage becomes a great hindrance. For instance,

27

MATLABr 2014a uses ≈ 400MB of RAM upon launch. For a robust workstation (i.e.

large scale SAR image processing) that has 8 − 16GB of RAM, the memory to run

MATLABr is easily acceptable. Unfortunately, the Raspberry Pi only has 512MB of

RAM; a single program using 400MB would cripple the platform. Another feature

of MATLABr that could be used is the MATLABr compiled runtime (MCR). The MCR

provides the ability to compile a script into a semi-self-contained executable [30]. This

executable uses significantly less RAM because the full user interface is not required

to run. However, the executable does require the MATLABr compiled run-time (MCR)

environment to be installed on the system where it is to be run [30].

In contrast to the use of MATLABr , interpreted languages such as Python may

be better suited for a low memory project [31]. The user interface for languages like

Python is often a command line prompt, using significantly less RAM than MATLABr

. In addition, scripts can be run without the command prompt in a similar fashion to

the MATLABr compiled executables. Combining the decreased RAM usage with the

ability to run scripts in a similar fashion to MATLABr makes a Python-like language

an appealing choice.

Finally, compiled languages such as C and C++ use the least amount of RAM

in comparison to the languages discussed above. With compiled languages, the code

itself cannot be run like the scripts for the above languages. Instead the code must

be processed by a compiler to create an executable file. The executable file created

is completely independent, and able to be run on any compatible system. Since

the executable does not need any external interface or helper, there is no memory

overhead beyond what has been specifically called for in the code. For limited systems

like the Raspberry Pi, reducing memory usage is critically important.

28

3.1.2 Speed of Execution.

The second parameter, speed of execution, is defined in the context of this thesis

as the time required to process the phase history data into an image. Execution time

is an essential parameter for this thesis, as the future goal of the project would be to

generate SAR imagery in real-time. MATLABr , which specializes in vector and linear

algebra type operations, is able to generate image data in a relatively short amount

of time [30]. The interpreted languages, as stated above, are converted to machine-

specific instructions at runtime, which adds to the execution time of the script/code

[31]. The compiled languages have to be converted to machine-specific instructions

before execution, resulting in faster runtimes than the interpreted languages. When

compiled without third party linear algebra libraries, the compiled languages and

MATLABr run in approximately the same amount of time, though the difference in run

times is close for all three language options.

3.1.3 Compatibility.

The third parameter, compatibility, has a much broader scope. In this context,

compatibility will be broken out into two areas: internal and external compatibility.

Internal compatibility allows script/code to continue working between different ver-

sions of the language it is written for. External compatibility is the ability of the

script/code to function on different platforms.

3.1.3.1 Internal Compatibility.

All three language families being evaluated lack consistent internal compatibility.

In the case of MATLABr , commands and functions used in the scripts may or may not

be compatible with different versions of MATLABr . Some commands and functions

are deprecated or completely removed, while others are altered to the point they no

29

longer behave the same as previous versions. Similarly, if the MATLABr scripts are

compiled to run with the MCR, then the compiled scripts must be executed on a

system with the compatible version MCR [30].

For interpreted languages, specifically Python, compatibility is better. For Python

the major releases are internally compatible, but Python is not compatible between

major releases [31]. For example, Python version 2.3 is compatible with version 2.6

but not compatible with version 3.2. Currently, the two major releases for Python

are 2.x and 3.x, both with numerous minor releases so care must be taken to ensure

that the correct major release of Python is installed [31].

Compiled languages function a bit differently than interpreted languages. General

code written for an old version of the language will compile in the new version, and in

some cases different languages can use the same compiler. However, it is not always

the case that code written for the new version will be able to compile with an older

compiler.

3.1.3.2 External Compatibility.

For external compatibility, the specific hardware is not an issue for any of the

choices. However, this does not mean that scripts and programs can be used in a

cavalier fashion. MATLABr is a licensed product, so each installed instance of it needs

to be licensed to operate [30]. Depending on the method of licensing, there may be a

limit on the maximum number of subscriptions an organization can use, or additional

fees for each new installation. Utilizing a license on a simplified platform such as the

R-Pi is impractical at best considering the crippling amount of memory MATLABr will

use. Python does not have the constraint of licensing, as it is a completely open source

tool [31]. All that is required to run Python code is for the Python interpreter to be

installed, and many operating systems come with Python as a preinstalled package.

30

Compiled languages are a little different; because code for a compiled language can

only be executed after being compiled and saved as machine-specific instructions, the

code must be recompiled for the different types of hardware and operating systems

that it will be run on.

Given the hardware platform being used in this thesis, memory usage and speed

to execute are by far the most important factors. The R-Pi has a limited amount

of both RAM and processing power [28]. Running the full MATLABr program on the

R-Pi would use the vast majority of the available RAM, debilitating the R-Pi, so

the full MATLABr is not a viable option. Using the MATLABr compiled runtime is

a potential option, as it requires much less memory to run. However, the propri-

etary nature and its compatibility challenges make this choice less appealing. The

interpreted languages provide another good option, but the minor overhead of the

interpreter hinders the performance. This leaves the family of compiled languages.

Any of the available compiled languages would be suitable for this project, but due to

familiarity and experience at this time, C++ will be the language used to implement

the backprojection algorithms.

3.2 Filtered Backprojection Algorithm Development

The filtered backprojection algorithm is a well-known and established image pro-

cessing algorithm. The implementation currently used at AFIT is a MATLABr script

developed by Dr. Julie Jackson, a major extension to a previous MATLABr script

developed by LeRoy Gorham and Linda Moore from Air Force Research Laboratory

Sensors Directorate [32]. Dr. Jackson’s backprojection algorithm provides a more

generalized and mathematically rigorous implementation of the prior script, to in-

clude [33]:

• Properly zero padding the bandpass frequency domain data for use in the inverse

31

FFT function [34]

• Bistatic SAR (with monostatic as a limiting case)

• The appropriate 2-D or 3-D ramp filtering required by the inverse Radon trans-

form [3] to account for integration sample spacing in phase history.

Dr. Jackson’s work creates the foundations from which this project is built. The

research that occurs in this thesis will be focused around three stages of code adap-

tation and testing. Stage one will take Dr. Jackson’s MATLABr script and translate it

to C++ code that can be supported by the current project hardware (the R-Pi). Af-

ter adapting and compiling, the C++ version will be compared against the MATLABr

version for speed of execution and image quality. If the backprojection algorithm is

not correctly translated, then the C++ code will not aid in the development of a low

cost, low SWAP SAR platform. On the other hand, if the C++ code does function

at a similar speed, with acceptable image quality, it can then be used as a baseline

for further development of the desired platform.

For translation of Dr. Jackson’s MATLABr script into the C++ programming lan-

guage, the major flow of the algorithm is the same. Figure 5 shows the flow for the

C++ implementation of the filtered backprojection algorithm. The “backprojection”

block of Figure 5 is a subroutine within the algorithm that performs the backprojec-

tion operation as outlined in Chapter 2, the steps of this subroutine are detailed in

Figure 6. The shaded section within the backprojection subroutine is the loop that

adds each processed pulse to the image (i.e. the actual backprojection operation).

Within the backprojection subroutine there is an additional process that performs

the inverse FFT operation, also detailed in Figure 6.

The primary deviation from the MATLABr script is in the creation of phase history

data. The C++ algorithm reads in the data from a file while the MATLABr algorithm

32

generates the phase history within the script. However many changes are made in how

the individual variables are handled. Without the use of third party linear algebra

libraries, and without having the MCR available, all of the vectorized computations

that are inherent in MATLABr have to be broken out into loops that only operate on

one element of the vector at a time. The vector to loop translation must be applied

to many of the variables in the algorithm, including the creation of the receiver

frequency and azimuth vectors and the transmitter azimuth vector. It is assumed

that the frequency band of the receiver and transmitter match. Other operations

that require loops or nested loops are: the creation and application of the ramp filter;

any of the shifting functions; and for each pulse looping through each pixel of the

image determining which index of the range profile data matches the range from scene

center of the pixel.

33

Figure 5. Flow chart for main program block of filtered backprojection. The backpro-
jection subroutine is depicted in Figure 6.

34

Figure 6. Flow chart for sub-routines of filtered backprojection, i.e. FFT procedures
and pixel summation.

35

3.3 Performance of Filtered Backprojection Implemented in C++ vs.

MATLABr

The filtered backprojection algorithm is implemented in C++ in order to establish

a baseline version of code that most directly compares to the MATLABr script developed

by Dr. Jackson [33]. As described above, modifications to the MATLABr script had

to be made to properly translate the filtered back projection algorithm over to the

C++ language. The performance of the C++ implementation is measured both

through comparison of the image data generated and the time required for the C++

implementation to generate the image data.

For the simulated image creation, a control set of ideal phase history data is

generated using a bistatic system. Figure 7 shows the locations of the scatterers in

the scene being imaged. All the targets have unit amplitude. Four targets in the lower

left quadrant are off set from the (x, y) plane to show handling of layover effects. The

targets at (x, y) = (2.5,−2.5) and (2.5,−7.5) are located at z = 3 above the plane.

The targets at (x, y) = (7.5,−2.5) and (7.5,−7.5) are located at z = −3 below the

plane.

The signal used has a center frequency of 10 GHz, with a bandwidth of 2 GHz

which gives a range resolution of ≈ 0.075 m for the monostatic case according to

Equation (10) from Chapter 2. The bistatic case has a range resolution of ≈ 0.1

m according to Equation (10) using the bistatic angle. To prevent aliasing in the

range direction for an image of +/-10 m (D = 20 m diameter), Equation (18) gives

the minimum sampling spacing as 0.314 cycles per meter. Using Equation (19) and

solving for M , the minimum number of samples for the 20 m diameter image is

533 samples so using 1024 frequency samples (the next power of two) is more than

satisfactory [3, 20].

For the cross-range or azimuth direction, the synthetic aperture for the monos-

36

tatic case has an angular extent of 30◦, or 0.5236 radians, which gives a cross-range

resolution of ≈ 0.03 m according to Equation (17) from Chapter 2. The bistatic case

has an angulare extent of 15◦ or 0.2862 radians, which gives a cross-range resolution

of ≈ 0.06 m. To prevent aliasing in the cross-range direction, the maximum sample

spacing along the data collection track/aperture is 6.82×10−4 radians, from Equation

(20) from Chapter 2. The simulation data has 2048 evenly-spaced azimuth samples

(pulses) giving a sample spacing of ∆θ = 2.56× 10−4 radians, which is less than the

maximum sample spacing stated above. A quick lookup of the above parameters can

be found in Table 2. A bistatic case using the same set of targets from Figure 7 is

also run using the parameters in Table 3.

Figure 7. Location of targets in simulation scene. All the targets have unit amplitude.
Targets at (x, y) = (2.5,−2.5), (2.5,−7.5), (7.5,−2.5) and (7.5,−7.5) are located off the (x, y)
plane and appear at projected locations in the formed image.

37

Table 2. Table of Parameters for Monostatic Simulation

Center Frequency 10 GHz
Bandwidth 2 GHz

Bandwidth Samples 1024
Tx Azimuth Extent 30◦

Tx Center Azimuth 0◦

Rx Azimuth Extent 30◦

Rx Center Azimuth 0◦

Pulses 2048
Tx Elevation 30◦

Rx Elevation 30◦

Image Extent 20 m ×20 m
Image X pixels 256
Image Y pixels 256

Table 3. Table of Parameters for Bistatic Simulation

Center Frequency 10 GHz
Bandwidth 2 GHz

Bandwidth Samples 1024
Tx Azimuth Extent 0◦

Tx Center Azimuth 75◦

Rx Azimuth Extent 30◦

Rx Center Azimuth 0◦

Pulses 2048
Tx Elevation 30◦

Rx Elevation 30◦

Image Extent 20 m ×20 m
Image X pixels 256
Image Y pixels 256

38

For a verification that the resolution of a point target in the monostatic case

matches what the parameters in Table 2 dictate, a zoomed in image of a single point

target is generated and the distance from the center of the point target to the edge

of the first contour is measured, as shown in Figure 8(a). The cross range direction

(labeled y-axis) has a point spread of ≈ 0.03m and the range direction (labeled x-

axis) has a point spread of ≈ 0.0791m, which matches what is expected from the

parameters. For a verification that the resolution of a point target in the bistatic case

(a) Monostatic Resolution Cell (b) Bistatic Resolution Cell

Figure 8. Zoom in of point scatterer to show resolution cell size.

matches what the parameters in Table 3 dictate, a zoomed-in image of a single point

target is generated and the distance from the center of the point target to the edge

of the first contour is measured, as shown in Figure 8(b). The cross range direction

has a point spread of ≈ 0.06m and the range direction (offset bacause of the bistatic

look angle) has a point spread of ≈ 0.1m, which matches what is expected from the

parameters.

Using the parameters outlined in Table 2, images are created for both the MATLABr

script and the C++ code so that a direct comparison can be made between the two

implementations. The image for the MATLABr script can be seen in Figure 9(a), and

39

the image for the C++ code can be seen in Figure 9(b). The processed pulse data

(range profile data) is complex when added to each pixel value, which doesn’t plot

into an image well. The magnitude of the pixel values on a decibel (dB) scale is used

for visualization. Visually there appears to be no difference between the MATLABr

generated image data and the C++ generated image data, but a direct comparison of

the pixel values tells a slightly different story. Figure 9(c) shows the magnitude of the

complex difference between the MATLABr generated image and the C++ generated

image in dB. The maximum linear value of the difference is −0.00026428−0.00044034i

or an absolute value of 5.1356× 10−4 (−66dB), and its mean-squared-error (MSE) is

1.7578× 10−12 + 6.6643× 10−12i or an absolute value of 6.8922× 10−12 (−223dB).

For a bistatic case using parameters from Table 3, the maximum difference between

the MATLABr and C++ images is 0.0045 + 0.001i (−47dB) and a MSE of −1.8989×

10−10 + 8.8717 × 10−11i (−194dB). Figures 10(a) and 10(b) show the MATLABr and

C++ generated images for the bistatic case. Figure 10(c) shows the difference between

the MATLABr and C++ images for the bistatic case.

A potential cause for the difference between the MATLABr and C++ generated

images is the differences in how MATLABr and C++ have their constants defined. For

example, the C/C++ math library and MATLABr define π the same out to 15 decimal

places, but then their values for the definition of π differ, which is an error that can

propagate through calculations using π.

40

(a) MATLABr generated image data (b) C++ generated image data

(c) Magnitude of complex difference between
MATLABr generated image in 9(a) and C++
generated image in 9(b)

Figure 9. Comparison of MATLABr generated image and C++ generated image for the
monostatic case.

41

(a) MATLABr generated image data (b) C++ generated image data

(c) Magnitude of complex difference between
MATLABr generated image in 10(a) and C++
generated image in 10(b)

Figure 10. Comparison of MATLABr generated image and C++ generated image for the
bistatic case.

42

With the low margin of error established, it is assumed that a reasonable baseline

version of C++ code has been achieved. Under this assumption, the time to gener-

ate image data between the MATLABr script and the C++ program is compared to

establish the performance of unoptimized C++ code with no linear algebra libraries.

Generating the images on the code development laptop, the MATLABr script has an

average time to run of 4 min 34 sec over 100 runs, and the C++ code has an average

time to run of 4 min 55 sec over 100 runs. The difference in the run times demonstrates

some of the optimizations MATLABr has for dealing with vectorized data. Unfortu-

nately, as stated earlier in this chapter the extra memory needed for MATLABr to run

prohibits the use of MATLABr on a platform such as the Raspberry Pi.

From a system resources perspective, memory and processor usage are the impor-

tant metrics to pay attention to. For the C++ code, the majority of the memory

being used is determined by the size of the phase history data and the image. Each

data point is represented by a complex double variable, which uses 16 bytes of memory

— an 8 byte double for the real component and an 8 byte double for the imaginary

component. For the image, the memory used is Nx × Ny × 16 bytes where Nx and

Ny are the pixel dimensions of the image. For the phase history data, the memory

is based on the dimensions of the phase history array (number of azimuth positions

× frequency samples). For the test simulation above, the memory usage for just

the image and phase history data sets is: 256 × 256 × 16 bytes for the image and

2048 × 1024 × 16 bytes for the phase history data. Using standard power of two

notation common in the computing world, the image uses 220 bytes or 1 megabyte

(MB) and the phase history data uses 225 bytes or 32 MB. In total, the approximate

minimum memory usage of the filtered backprojection C++ code, as currently im-

plemented for the example in 9(b), should be ≈ 35 MB. A quick review of resource

usage between MATLABr and C++ can be seen in Table 4. It should be noted that

43

the monostatic and bistatic cases use the same image size, same number of frequency

samples and same number of azimuth positions; therefore the amount of data being

used in the algorithm is the same. The time and memory usage between the mono

and bistatic cases is equivalent.

Table 4. C++ resource usage versus MATLABr .

Resource \Language MATLABr C++
Time 4 min 34 sec 4 min 55 sec

Memory ≈ 600 MB 32.88 MB

The actual run-time memory usage of the C++ implementation for the example in

9(b) is 32.88 MB, using the simulation data sets. For the MATLABr script in [33], the

memory usage of just MATLABr R2014a is ≈ 450 MB and with the code running the

memory increases to ≈ 600 MB, which indicates that the MATLABr script uses ≈ 150

MB of memory. Alternative implementations may be able to decrease the amount of

memory used. However, these alternatives could significantly increase the total pro-

cessing time. Due to both memory and time being pertinent criteria for the project,

the current tested model will continue to be used. Alternative implementations will

be discussed later as possible future research options.

3.4 Factorized Backprojection Algorithm Development

The factorized backprojection (FBP) algorithm as described in Chapter 2.2.2 mod-

ifies the filtered backprojection algorithm to decrease the amount of computation re-

quired to form the desired image. To implement the FBP algorithm, a few critical

changes had to be made to the algorithm for filtered backprojection. The prime moti-

vation for using the FBP algorithm is to decrease the total time required to generate

an image. As detailed in Chapter 2, FBP decreases computation time through re-

cursive decimation of the angular samples and sub-image processing. A flow diagram

44

of the recursive process is referenced in Figure 11. In the “factorize” subroutine, the

shaded blocks represent the processing of each image quadrant.

Figure 11. Flow chart for main program block of factorized backprojection.

The major change translating from the filtered backprojection to the factorized

backprojection is the implementation of the recursive decimation and partitioning

steps. The first check within the recursive function is to check to see if the base

condition has been met. The base condition(s) can be: a fixed number of recursion

levels, a minimum pixel number for the sub-image passed into the function, or a

45

minimum number of pulses to process. The recursive function as implemented checks

for all three conditions. If the base condition(s) are met, then backprojection is

performed on the current sub-image and the decimated phase history data; otherwise

the recursive function is entered again.

The phase history decimation occurs over the azimuth samples (pulses) and re-

duces the number of samples by a factor of two. Sampling theory, as detailed in

Chapter 2, tells us that the number of samples within the bandwidth determine the

un-aliased scene extent. To mitigate the effects of aliasing, sampling theory recom-

mends implementing an anti-aliasing filter, with an ideal filter being an infinite length

sinc function [3]. For practical cases, the sinc function must be truncated. Where

the filter is truncated at is a compromise between speed and aliasing. The FBP code

implements various length filters to highlight the effect of aliasing and filter length

on image quality, and will be discussed further in the next section.

Once the phase history data has been filtered and decimated for the current level of

recursion, the image at the current level of recursion is divided up into four quadrants

by limiting each quadrant to half the current image scene extent and half the pixel

count. Each quadrant is iterated through to process the image data for that quadrant,

as was shown in Chapter 2.

3.5 Performance of Factorized Backprojection in C++ vs. Filtered Back-

projection in C++

Performance of the C++ factorized backprojection implementation will be evalu-

ated using the same criteria as the C++ filtered backprojection: speed, image quality

and memory usage. As stated in the previous section, the purpose of the factorized

backprojection algorithm is to reduce total computation time. However, the method

used to reduce the computation time introduces error in the form of image aliasing.

46

This prior knowledge leads us to focus on the computation time and image quality

instead of memory, which was the focus of the stage one above.

To evaluate the computation time, a minimal length anti-aliasing filter (3 samples)

is used and the number of recursion levels is varied. As stated in Chapter 2, the

number of recursion levels should reduce the computation time, up to a point. Figure

12 shows the time to compute for multiple levels of recursion. In the figure a minimum

time to compute is seen at two levels of recursion, but the general curve shown

indicates a minimum somewhere between 2 and 3, matching the minimum of e ≈ 2.718

stated in [7]. The theoretical minimum cannot be directly tested for in the current

implementation as a non-integer number of recursions cannot be done. Above three

levels of recursion the number of branches generated in the recursive tree becomes the

largest time consumer and the computation time increases. Each branch represents

one quadrant of the image/subimage that is being processed for the current level of

recursion. As the number of recursions increases, the number of branches increases

at a rate of 4R + 1 where R is the number of recursions. Backprojection of the phase

history data ends up being fewer processing steps than the over head processing to;

filter and decimate the phase history data for each level of recursion, create new

subimages, and pass the required variables to the next level of recursion.

Now that the factorized backprojection algorithm has been shown to decrease

the computation time, what penalty is paid in image quality to achieve that time

decrease? As discussed in Chapter 2, decreasing the number of samples reduces the

un-aliased scene extent and requires an anti-aliasing filter. For a minimal length filter

of 3 samples, more levels of recursion increase the aliasing error rapidly. Figures 13(a),

13(b), 13(c), and 13(d) visually depict the how the image quality suffers from the

aliasing. Figure 15 shows how the mean-squared error (MSE) from aliasing grows with

recursion levels. The MSE is computed the same as in previous image comparisons:

47

Figure 12. Time to compute vs. number of recursion levels for the example in Figure
9(b).

using the difference of the complex magnitude of each corresponding pixel. The

error introduced by the pulse reduction is significantly larger than the error due to

converting from MATLABr to C++ (−81.6dB versus −223dB after just the first level

of recursion). Zero levels of recursion is equivalent to filtered backprojection, and has

the same error as in Figure 9(c)

48

(a) Zero levels of recursion (b) One level of recursion

(c) Two levels of recursion (d) Three levels of recursion

Figure 13. Effect of aliasing on image quality for various levels of recursion.

49

(a) Zero levels of recursion — complex differ-
ence from MATLABr filtered backprojection

(b) One level of recursion — complex difference
from MATLABr filtered backprojection

(c) Two levels of recursion — complex differ-
ence from MATLABr filtered backprojection

(d) Three levels of recursion — complex differ-
ence from MATLABr filtered backprojection

Figure 14. Aliasing error introduced through various levels of recursion. Zero levels of
recursion is equivalent to filtered backprojection (no aliasing), and has the same error
as in Figure 9(c).

50

Figure 15. MSE of the aliasing error introduced by recursion.

The rapidly growing error in Figure 15 succinctly shows that something must be

done about the aliasing issue, supporting sampling theory’s call for an anti-aliasing

filter. This filter can be implemented in a number a ways, with the ideal case being

the infinite length sinc filter described in Chapter 2. Since an infinite length filter

cannot be implemented in code, a truncated sinc function is used as an approximation

for the ideal case. Where to truncate the sinc function is an arbitrary decision, and is

influenced by code complexity, computation time and desired image quality. Chapter

2 posits that a longer filter will reduce aliasing more. However, a longer filter is more

complex to implement in code, and increases total computation time. It is desirable

to see the impact of the anti-aliasing filter to determine the benefits of implementing

a longer filter.

To see the impact that the anti-aliasing filter has on the image quality, filters of

various lengths are implemented. To show aliasing in the scene, but also keep the

51

computation time to a minimum, the number of recursions is held to 2. The phase

history data is a discrete, sampled data set, so a discrete anti-aliasing filter must be

used. To apply a discrete filter, a set of filter coefficients to match the length of the

filter are determined using Equation (26) in Chapter 2 with a new sampling interval.

The sampling interval used here is the desired angular distance between every other

pulse in radians (the new sampling rate). The distance from the peak (center) of the

sinc function to first zero crossing point is determined by the new sampling interval,

and detailed in Chapter 2. The azimuth sample data is multiplied by the value of

the sinc function at the corresponding location. Figures 16(a), 16(b), and 16(c) show

the result of filters with n = 3, 5, 7 samples respectively. Note that as the length of

the filter is increased the aliasing artifacts do not disappear, but they are reduced.

As the length of the filter is increased, the aliasing error will be reduced. There are

also other filtering and windowing functions that can be implemented to recude the

error, as discussed in [17].

Setting the number of recursion levels at two, the anti-aliasing filter length is

altered to see the effect on the time to compute and the image quality. The longer the

filter used, the better the image quality but the longer the run-time of the algorithm.

The effect of the length of the anti-aliasing filter on image quality can be seen in

figure 17, which shows that as the filter length increases, the error decreases. The

time to compute wasn’t greatly affected for the lengths of filter chosen (on the order

of milliseconds).

52

(a) Length 3 anti-aliasing filter (b) Length 5 anti-aliasing filter

(c) Length 7 anti-aliasing filter

Figure 16. Images generated using 2 levels of recursion and varied filter length.

53

Figure 17. Mean squared error of the difference between filtered backprojection and
2-level recursion factorized backprojection vs. filter length.

54

The factorized backprojection function uses memory differently than the filtered

backprojection. The recursive nature of the function increases the memory usage due

to the fact that each level of recursion creates its own set of variables, and the parent

levels are stored while the child levels are being processed.

At each level the amount of memory required is decreased due to the decimation

of the phase history data and the image partitioning, but the recursion does increase

the total amount of memory used. For zero levels of recursion, the memory is identical

to the usage for filtered backprojection — 32MB. Increasing to one level of recursion,

the memory usage with the simulation data set increases to 53MB. The general trend

can be seen in Figure 18.

Figure 18. Memory usage versus levels of recursion for factorized backprojection.

Factorized backprojection has been shown to provide a speed increase, but it also

comes with a penalty to image quality due to the aliasing issue. To counter the

aliasing issue, an anti-aliasing filter can be applied for a very minor speed penalty.

55

The speed penalty is minor enough, and the improvement to image quality is great

enough to warrant a longer filter. There is also a memory usage increase over what

filtered backprojection uses. However, this memory increase has a limit and is not

significant enough to detract from the speed increase afforded by using the factorized

backprojection algorithm.

56

IV. Implementation on Raspberry Pi

Chapter 3 defined the broader design environment. The components that comprise

the design environment include: a Raspberry Pi as the test platform, C++ as the

programming language, and filtered and factorized backprojection as the algorithms

implemented. Using a controlled experimental environment, Chapter 3 provided an

ideal test base for the development of C++ code that is functional, but also works

within the limited memory constraints supplied by a much smaller platform. It was

possible to develop a fundamental code that maintained quality of the imagery while

also decreasing run time. Now that all of these pieces are tested and accepted as

a baseline, Chapter 4 will take the developed algorithm and actually apply it in

more practical pretenses. This will serve as the first attempt to actually implement

the designed code on to the smaller, low SWAP platform of the Raspberry Pi. The

performance of the developed C++ code on the Raspberry Pi will be evaluated against

the same criteria as used before: time to generate images, quality of images, and

memory usage.

To evaluate the processing time, the filtered backprojection is first used to establish

a baseline. The expectation for the processing time is that the filtered backprojection

code will run slower on the Raspberry Pi due to its slower processor. On the laptop

used to develop the code, the filtered backprojection code generated image data in 4

min 55 sec, while on the Raspberry Pi the image data was generated in 20 min 33

sec. These baseline results agree with the expectation that processor speed has an

impact on the time to generate image data. Running the factorized backprojection

code on the Raspberry Pi also shows an across the board slow down for all recursion

levels. Figure 19 shows that the time to run trend observed on the development

laptop is also observed on the Raspberry Pi, with the same minimum between 2 and

3 levels of recursion. These results show that, accounting for the slower processor of

57

Figure 19. Time to compute vs. number of recursion levels on Raspberry Pi.

the Raspberry Pi, the speed performance of the algorithms remains comparable when

implemented on the low cost, low SWAP platform.

To compare the image quality, images generated on the Raspberry Pi are compared

to equivalent images created on the development laptop. The expectation is that the

platform for which the code is compiled for will have no effect on the quality of the

images. Figures 20-23 show the images created on the development laptop on the left,

images created on the Raspberry Pi in the middle, and the magnitude of the complex

difference on the right. Visually the difference image appears to be blank. The actual

maximum difference for each of the images is 0 for the precision of the data that was

written to the image file. Since only the algorithm and system parameters (see Table

2) affect the image quality, the code is now only limited by the available compiler.

The results in Chapter 3 showed that the factorized backprojection algorithm

uses an increasing amount of memory with each recursion level performed. On the

58

(a) C++ image on Laptop (b) C++ image on Raspberry
Pi

(c) Difference between image on
laptop and Raspberry Pi.

Figure 20. Comparison of images generated on Development laptop vs. Raspberry Pi
for zero recursion levels.

(a) C++ image on Laptop (b) C++ image on Raspberry
Pi

(c) Difference between image on
laptop and Raspberry Pi.

Figure 21. Comparison of images generated on Development laptop vs. Raspberry Pi
for one recursion level.

Raspberry Pi, memory is a very limited resource so any memory usage must be closely

looked at. The memory growth seen on the Raspberry Pi matched the memory growth

seen on the development laptop. For the parameters and image size from Table 2, the

memory growth does not affect the time to generate image data on the Raspberry

Pi. However, increasing any of the parameters that affect the amount of data to be

processed (e.g. azimuth and frequency samples, or image size) will rapidly deplete

the available memory on the Raspberry Pi.

Overall, the filtered and factorized backprojection algorithms performed as ex-

pected on the Raspberry Pi. Knowing that the Raspberry Pi has a slower processor

59

(a) C++ image on Laptop (b) C++ image on Raspberry
Pi

(c) Difference between image on
laptop and Raspberry Pi.

Figure 22. Comparison of images generated on Development laptop vs. Raspberry Pi
for two recursion levels.

(a) C++ image on Laptop (b) C++ image on Raspberry
Pi

(c) Difference between image on
laptop and Raspberry Pi.

Figure 23. Comparison of images generated on Development laptop vs. Raspberry Pi
for three recursion levels.

(700MHz versus 2.2GHz on the laptop) the speed was expected to be slower, though

by how much was unknown.

60

V. Hardware Implementation Discussion

The factorized backprojection algorithm provides a significant decrease in pro-

cessing time to create an image, as the results in Chapter 3 show. The processing

time can be decreased further if some method of parallel computing is used. With

a Raspberry Pi, the processor can only handle one process at a time (it is a single

thread processor) and so cannot process in parallel. However, the Raspberry Pi has

been proven to operate in what is called a Beowulf cluster [35]. A Beowulf cluster is

a collection of identical compute systems, networked together and running a parallel

programming software that allows each system in the cluster to share data and com-

putation [35]. Connecting a number of Raspberry Pi systems in a Beowulf cluster

would allow for a parallel approach to factorized backprojection using the Raspberry

Pi platform.

The partitioning of the image in the factorized backprojection algorithm readily

lends itself to parallel processing [36]. In a simple one recursion scenario, a “top”

Raspberry Pi would filter and decimate the phase history data, divide the image up

in to four quardants, and then send each quardant and a copy of the decimated phase

history data to one of four connected Raspberry Pi’s. The second tier Pi’s would

process their respective quadrant of the final image and then send that data back to

the “top” Pi for reconstruction into the final image. Depending on the number of

Raspberry Pi’s available, the same process can be repeated for the second tier Pi’s.

Each of the second tier Pi’s could filter and decimate the phase history data they

received from the “top” tier, partition their quadrant and send the decimated phase

history data and subimages to additional Pi’s in a third tier for processing. The

number of required processing units grows exponentially as more level of recursion

are used, so the number of processing tiers has to remain small.

The Raspberry Pi also possesses a general processing unit (GPU) that can be

61

tapped into for processing. A GPU is typically used to process video data and

has powerful parallel processing capability, but not usually accessible for normal op-

erations. Currently, there are not many programming libraries available for using

the GPU. One that is available is the GPU FFT, a method of sending fast Fourier

trasnform (FFT) operations from the FFTW library over to the GPU for process-

ing [37]. If large FFT’s (220 or more elements) need to be calculated, it could be very

adventageous to off-load that processing to the GPU.

62

VI. Conclusions/Future Work

The main goal of this thesis was to investigate the feasibility of implementing

real time SAR imaging on a low cost, low SWAP platform. While a great deal of

interest and research was spent on large-platform SAR, the use of small-platforms was

limited to the civilian environment. However, smaller platforms do provide a useful

tool that is lacking, and could open a new area of research. As very little data and

research exists on this topic, this thesis set out to form the foundation and serve as a

maiden test of feasibility for such a project. In order to pursue this goal, the project

focused on a three-stage research process that advanced from the adaptation of SAR

algorithm written using MATLAB, to one written in C++, a much less proprietary

language that used less overhead memory to run. After adaptation of the code, stage

one tested the script in C++ against the original MATLAB ran script. Testing for

image quality and run time, both languages preformed comparatively. However, C++

did use less memory to execute the code that MATLAB did, as MATLAB is a much

larger and diverse program.

The second stage of the project then took the adapted code and evaluated the

ability to decrease run time without decreasing image quality. Using factorized back-

projection, the first test of this stage did result in decreased run time, but poor image

quality. As discussed by sampling theory in Chapter 2, a filter was added to the code

to aid in maintaining image quality. The experiment then evaluated the length of fil-

ter in relation to the decrease in run time. While the filter resulted in very marginal

increases in run time in comparison to the pre-filter model, the image quality was

greatly improved. As such, it was concluded that the longer the filter, the greater the

maintenance of image quality and the run time increase was minimal.

Lastly, the third stage transferred the experimental algorithm to the performance

stage. The algorithm was then loaded and tested on a very basic small-platform

63

(Raspberry Pi), which served as a baseline, cost-effective, low-power platform. While

the test did provide positive results as the code did run with satisfactory image

quality, areas of memory usage and processor size greatly affected the run time of the

Raspberry Pi.

Based on the conclusions gathered from the project, the overall goal of the thesis

remained intact. It is feasible to run a SAR algorithm off of a low-cost, low-SWAP

platform, though not practical or in real time with the current implementation. The

research conclusions from each of the individual stages provided numerous areas for

improvement and further research. Alternative implementations of the code could

serve as an area of possible improvement for overall memory usage and memory

efficiency, as well as the exploration and evaluation of other coding languages. As

discussed back in Chapter 3, both C and Python could also serve as possible languages

that would be worthy of testing and comparing to the C++ code that was adapted

in this thesis. The code comparisons may also aid in decreasing run time, as well as

the overall size of the processor in the given small platform. A small platform that

may be a little pricier than the basic Raspberry Pi, or even a newer version of the

Raspberry Pi could be better equipped to run the algorithm and therefore decrease

the total run time of the code.

Another avenue for research and development would be to expand on the code.

This could include features that reads data directly in from a given device, as opposed

to reading in from a specific file as the code currently does. This read-in would serve

as a very interesting alternative worthy of evaluation . At the output end, the data

could directly output to a video device as it is created: currently the image data is

saved to a file for later conversion to an image. If the future goal of this project would

be truly real time image creation, both of these options would be necessary to receive

radar data and create an image for immediate use.

64

There are many new research questions and project possibilities that this thesis

has opened up for future AFIT students and analysts. While the project is still very

much in its infancy, there were promising steps that show promise in researching areas

of small-platform SAR for future tactical imagery.

65

Bibliography

1. C. Sherwin, J. Ruina, and R. Rawcliffe, “Some Early Developments in Synthetic
Aperture Radar Systems,” IRE Transactions on Military Electronics, vol. MIL-6,
no. 2, pp. 111–115, April 1962.

2. W. G. Carrara, R. S. Goodman, and R. M. Majewski, Spotlight Synthetic Aperture
Radar Signal Processing Algorithms. Norwood, MA: Artech House, 1995.

3. C. V. Jakowatz, D. E. Wahl, P. H. Eichel, D. C. Ghiglia, and P. A. Thompson,
Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach. New
York, NY: Springer Science and Business Media, LLC, 1996.

4. V. Vu, T. Sjogren, and M. Pettersson, “Fast factorized backprojection algorithm
for UWB SAR image reconstruction,” in IEEE International Geoscience and
Remote Sensing Symposium (IGARSS), July 2011, pp. 4237–4240.

5. J. Munson, D.C., J. O’Brien, and W. Jenkins, “A Tomographic Formulation of
Spotlight-Mode Synthetic Aperture Radar,” Proceedings of the IEEE, vol. 71,
no. 8, pp. 917–925, Aug 1983.

6. Z. Li, J. Wang, and Q. H. Liu, “Frequency-Domain Backprojection Algorithm
for Synthetic Aperture Radar Imaging,” IEEE Geoscience and Remote Sensing
Letters, vol. 12, no. 4, pp. 905–909, April 2015.

7. L. Ulander, H. Hellsten, and G. Stenstrom, “Synthetic-Aperture Radar Process-
ing Using Fast Factorized Back-Projection,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 39, no. 3, pp. 760–776, July 2003.

8. A. Yegulalp, “Fast Backprojection Algorithm for Synthetic Aperture Radar,” in
The Record of the 1999 IEEE Radar Conference, 1999, pp. 60–65.

9. S. Xiao, J. Munson, D.C., S. Basu, and Y. Bresler, “An N2logN Back-Projection
Algorithm for SAR Image Formation,” in Conference Record of the Thirty-Fourth
Asilomar Conference on Signals, Systems and Computers, vol. 1, Oct 2000, pp.
3–7 vol.1.

10. S. Basu and Y. Bresler, “O(N2 log2N) filtered backprojection reconstruction al-
gorithm for tomography,” IEEE Transactions on Image Processing, vol. 9, no. 10,
pp. 1760–1773, Oct 2000.

11. A. Boag, Y. Bresler, and E. Michielssen, “A multilevel domain decomposition al-
gorithm for fast O(N2 logN) reprojection of tomographic images,” IEEE Trans-
actions on Image Processing, vol. 9, no. 9, pp. 1573–1582, Sep 2000.

66

12. Y. Ding and J. Munson, D.C., “A Fast Back-Projection Algorithm for Bistatic
SAR Imaging,” in Proceedings of the International Conference on Image Process-
ing, vol. 2, 2002, pp. II–449–II–452 vol.2.

13. T. Pipatsrisawat, A. Gacic, F. Franchetti, M. Puschel, and J. Moura, “Per-
formance Analysis of the Filtered Backprojection Image Reconstruction Algo-
rithms,” in Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing, vol. 5, March 2005, pp. v/153–v/156 Vol. 5.

14. A. Ribalta, “Optimizing the Factorisation Parameters in the Fast Factorized
Backprojection Algorithm,” in 9th European Conference on Synthetic Aperture
Radar (EUSAR), April 2012, pp. 356–359.

15. L. M. H. Ulander, P.-O. Froelind, A. Gustavsson, D. Murdin, and G. Stenstroem,
“Fast Factorized Back-Projection for Bistatic SAR Processing,” in 8th European
Conference on Synthetic Aperture Radar (EUSAR), June 2010, pp. 1–4.

16. G. Shippey, S. Banks, and J. Pihl, “SAS image reconstruction using Fast Polar
Back Projection: comparisons with Fast Factored Back Projection and Fourier-
domain imaging,” in Oceans 2005 - Europe, vol. 1, June 2005, pp. 96–101 Vol.
1.

17. P. Frolind and L. Ulander, “Evaluation of angular interpolation kernels in fast
back-projection SAR processing,” IEE Proceedings - Radar, Sonar and Naviga-
tion, vol. 153, no. 3, pp. 243–249, June 2006.

18. S. Banks and H. Griffiths, “The use of Fast Factorised Bank-Protection for syn-
thetic aperture sonar imaging,” 2002.

19. E. Zaugg, M. Edwards, and A. Margulis, “The SlimSAR: A Small, Multi-
Frequency, Synthetic Aperture Radar for UAS Operation,” in 2010 IEEE Radar
Conference, May 2010, pp. 277–282.

20. J. A. Jackson, “EENG714 Advanced Radar Systems Class Notes,” Course Hand-
out, Air Force Institute of Technology, Wright-Patterson AFB OH, Summer Quar-
ter 2015.

21. N. J. Willis and H. D. Griffiths, Advances in Bistatic Radar. Edison, NJ: SciTech
Publishing, 2007.

22. A. J. Jerri, “The Shannon sampling theorem — Its various extensions and applica-
tions: A tutorial review,” Proceedings of the IEEE, vol. 65, no. 11, pp. 1565–1596,
1977.

23. I. G. Cumming and F. H. Wong, Digital Signal Processing of Synthetic Aperture
Radar Data. Norwood, MA: Artech House, Inc., 2005.

67

24. A. Brandt, J. Mann, M. Brodski, and M. Galun, “A Fast and Accurate
Multilevel Inversion of the Radon Transform,” SIAM Journal on Applied
Mathematics, vol. 60, no. 2, pp. 437–462, 2000. [Online]. Available:
http://dx.doi.org/10.1137/S003613999732425X

25. A. George and Y. Bresler, “Fast Tomographic Reconstruction via Rotation-Based
Hierarchical Backprojection,” SIAM Journal on Applied Mathematics, vol. 68,
no. 2, pp. 574–597, 2007. [Online]. Available: http://dx.doi.org/10.1137/
060668614

26. Majumder, U. K. and Casteel Jr, C. H. and Buxa, P. and Minardi, M. J. and Zel-
nio, E. G. and Nehrbass, J. W., “SAR data exploitation: computational technol-
ogy enabling SAR ATR algorithm development,” in Defense and Security Sympo-
sium. International Society for Optics and Photonics, 2007, pp. 65 680L–65 680L.

27. Hellsten, H. and Ulander, L. M. and Gustavsson, A. and Larsson, B., “Devel-
opment of VHF carabas II SAR,” in Aerospace/Defense Sensing and Controls.
International Society for Optics and Photonics, 1996, pp. 48–60.

28. Raspberry Pi Foundation. (2016) Raspberry Pi Model Specifications. [Online].
Available: https://www.raspberrypi.org/documentation/hardware/raspberrypi/
models/specs.md

29. Raspbian. (2016) FrontPage - Raspbian. [Online]. Available: https://www.
raspbian.org/

30. MathWorks Inc. (2016) MathWorks – MATLAB and Simulink for Technical
Computing. [Online]. Available: http://www.mathworks.com/

31. Python.org. (2016) Welcome to Python.org. [Online]. Available: http:
//www.python.org/

32. L. A. Gorham and L. J. Moore, “SAR image formation toolbox for MATLAB,”
in SPIE Defense, Security, and Sensing. International Society for Optics and
Photonics, 2010, pp. 769 906–769 906.

33. J. A. Jackson, “MATLAB Bistatic Backprojection Script,” Course Handout, Air
Force Institute of Technology, Wright-Patterson AFB OH, Summer Quarter 2015.

34. A. Oppenheim and R. Schafer, Digital Signal Processing. Prentice-Hall, 1975.

35. J. Kiepert, “Creating a raspberry pi-based beowulf cluster,” 2013.

36. A. Rogan and R. Carande, “Improving the fast back projection algorithm
through massive parallelizations,” pp. 76 690I–76 690I–8, 2010. [Online].
Available: http://dx.doi.org/10.1117/12.850332

37. Raspberry Pi Foundation. (2016) Raspberry Pi Foundation. [Online]. Available:
https://www.raspberrypi.org/

68

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

24–03–2016 Master’s Thesis Sep 2014 — Mar 2016

Implementation and Performance
of Factorized Backprojection

on Low-cost Commercial-Off-The-Shelf Hardware

16G217

Rasmussen, Alec S., Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-16-M-041

Air Force Research Laboratory
Sensors Directorate
WPAFB OH 45433
COMM 937-528-8940
Email: kung.ding@us.af.mil

RYMH

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

Traditional Synthetic Aperture Radar (SAR) systems are large, complex, and expensive platforms that require significant
resources to operate. The size and cost of the platforms limits the potential uses of SAR to strategic level intelligence
gathering or large budget research efforts. The purpose of this thesis is to implement the factorized backprojection SAR
image processing algorithm in the C++ programming language and test the code’s performance on a low cost, low size,
weight, and power (SWAP) computer : a Raspberry Pi Model B. For a comparison of performance, a baseline

implementation of filtered backprojection is adapted to C++ from pre-existing MATLABr code. The factorized
backprojection algorithm shows a computational improvement factor of 2-3 compared to filtered backprojection.
Execution on a single Raspberry Pi is too slow for real-time imaging. However, factorized backprojection is easily
parallelized, and we include a discussion of parallel implementation across multiple Pis.

Backprojection, SAR, Raspberry Pi, Factorized backprojection

U U U U 80

Dr. Julie Jackson, AFIT/ENG

937-255-3636 x4678; Julie.Jackson@afit.edu

